
Chapter 3

Elements of Probability and
Statistics

Many real-life systems exhibit behavior with random elements. Such systems
encompass a vast array of application areas, such as the following:

1. Manufacturing
� Random demand for product held in an inventory system
� Random product processing time or transfer time
� Random machine failures and repairs

2. Transportation
� Random congestion on a highway
� Random weather patterns
� Random travel times between pairs of origination and destination points

3. Telecommunications
� Random traffic arriving at a telecommunications network
� Random transmission time (depending on available resources, such as buffer space
and CPU)

Indeed, simulation modeling with random elements is often referred to as Monte
Carlo simulation, presumably after its namesake casino at Monte Carlo on the Mediter-
ranean. This apt term commemorates the link between randomness and gambling, going
back to the French scientist Blaise Pascal in the 17th century.

Formally, modeling a random system as a discrete-event simulation simply means
that randomness is introduced into events in two basic ways:

� Event occurrence times may be random.
� Event state transitions may be random.

For instance, random interarrival times at a manufacturing station exemplify the first
case, while random destinations of product units emerging from an inspection station
(possibly needing re-work with some probability) exemplify the second. Either way,
probability and statistics are fundamental to simulation models and to understanding the
underlying random phenomena in a real-life system under study. In particular, they play
a key role in simulation-related input analysis and output analysis. Recall that input
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analysis models random components by fitting a probabilistic model to empirical data
generated by the system under study, or by postulating a model when empirical data
is lacking or insufficient. Once input analysis is complete and simulation runs (repli-
cations) are generated, output analysis is then employed to verify and validate the
simulation model, and to generate statistical predictions for performance measures of
interest.

This chapter reviews the basic probabilistic and statistical concepts underlying
Monte Carlo simulation. Additional material will be presented in Chapter 7 (on input
analysis), Chapter 8 (on model verification and validation), Chapter 9 (on output
analysis), and Chapter 10 (on correlation analysis). For further readings on probability,
see, for example, Çinlar (1975), Ross (1993), Hoel et al. (1971a), Feller (1968), and
Taylor and Karlin (1984).

3.1 ELEMENTARY PROBABILITY THEORY

Informally, probability is a measure of the uncertainty inherent in the occurrence of
random phenomena, such as the following statements in future tense:

� It will rain tomorrow.
� I will win the lottery next week.
� The Fed will raise interest rates next month.

Probability is measured on a continuous scale spanning the interval [0, 1]. In
particular, a probability of 0 means that it is certain that the phenomenon will not
occur, while a probability of 1 means that it is certain that the phenomenon will occur.
Probabilities lying strictly between 0 and 1 quantify any intermediate likelihood of
occurrence.

The notion of “likelihood” has a practical operational meaning, linked intimately
with statistics. Suppose we observe multiple “experiments” in the underlying system
(replications), and each time we record whether or not some specified phenomenon, A,
occurred. Suppose we observed n such experiments and found that in k of them the
phenomenon A occurred (and therefore, in n� k of them, it did not occur). The
probability of A occurring, is then estimated by the frequency ratio

p̂A ¼ k

n
,

which is indeed between 0 and 1. This is merely an estimate with a likely experimental
error, but we hope that as the number of experiments n increases, the accuracy of p̂A
would improve. In practice, people often use the term “probability” loosely to refer to its
estimate, because the true probability is unknown.

Probability estimates can be more complex than simply frequency ratios. For
example, a probability estimate of a horse winning a race can indeed be computed as
a ratio based on the horse’s historical track record. However, the odds published by
book makers are estimates based on the opinion of the betting public, which is itself
based on many other complex factors, such as past races, weather, trainers, and possibly
illegal inside information. All these are encapsulated into a measurable quantity and an
observable statistic.
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3.1.1 PROBABILITY SPACES

The theory of probability is an abstraction that formalizes these ideas. It introduces
a set of postulates, including a probability calculus. Formally, a probability space is a
triple of objects, (O, E, Pr), where:

� O is the sample space, corresponding to all possible “outcomes” of the random
phenomenon under consideration. Although the sample space is an abstract concept,
a sample point o 2 O can be thought of as an “experiment” over the underlying
(random) system.

� E is the event set, corresponding to permissible sets of “outcomes.” Thus, an event
A 2 E is a set of sample points, that is, A � O. The empty set, f, and the sample space,
O, always belong to E. Furthermore, if O is countable (finite or infinite), then every
subset of O belongs to E. In all other cases, we must impose technical conditions on the
membership of events, which are beyond the scope of this book.

� Pr is a probability measure, which satisfies the following postulates:
a. 0 � PrfAg � 1 for all A 2 E (in particular, Prffg ¼ 0 and PrfOg ¼ 1).
b. For any events A,B 2 E, satisfying A \ B ¼ f (disjoint events),

PrfA [ Bg ¼ PrfAg þ PrfBg, (3:1)

which is a special case of the equality

PrfA [ Bg ¼ PrfAg þ PrfBg � PrfA \ Bg: (3:2)

The postulates above are reasonable. The probability of “no outcome” is impossible
and therefore always evaluates to the minimal value, 0. The probability of any of
the “possible outcomes” occurring is a certainty, and therefore always evaluates to the
maximal value, 1. Finally, if two events do not overlap, their probability of occurrence
is the sum of their probabilities. Otherwise, the sum of their probabilities contains
twice the probability of their intersection (instead of one such probability), so one
superfluous probability of the intersection is subtracted.

Let O ¼ [An be a partition of the sample space into mutually disjoint events fAng.
Then for any event B, the formula of total probability is

PrfBg ¼
X
n

PrfAn \ Bg: (3:3)

3.1.2 CONDITIONAL PROBABILITIES

The concept of conditioning plays a major role in probability theory. More precisely,
if A and B are events, such that PrfBg > 0, then the probability of event A conditioned
on event B, is denoted by PrfAjBg and defined by

PrfAjBg ¼ PrfA \ Bg
PrfBg : (3:4)

Equation 3.4 is alternatively referred to as the probability of event A given event B. The
meaning of conditional probabilities can be explained as follows. Suppose we wish to
consider the occurrence of event A, but only if we know that a prescribed event B has
actually occurred. In a sense, we require the event B to become our new sample space,
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and we look at the probability of event A only when it occurs concurrently with event B
(the numerator of Eq. 3.4). We divide by the probability of B (the denominator of
Eq. 3.4), to ensure that the maximal value of the conditional probability, PrfBjBg,
is normalized to 1. Thus, a conditional probability cannot be defined via Eq. 3.4 when
the given (conditioning) event, B, has zero probability of occurring; in this case, the
conditional probability should be specified by other means.

The operational meaning of conditioning can be viewed as the modification of
the probability of an event A by the added “information” that another event B has
actually occurred. For example, if we throw a single die, then the odds of the outcome
being 4 is one in six (probability 1/6). However, suppose that after the die is cast, we
are not allowed to see the outcome, but are told that the outcome was even. This
new information modifies the previous probability, Prfoutcome is 4g ¼ 1=6, to a new
probability, Prfoutcome is 4joutcome is eveng ¼ 1=3, since the odds of obtaining
an even outcome (2, 4, or 6) is 1 in 3 (note that these events are disjoint, so the
probabilities are additive). By the same token, if it were known that the outcome turned
out to be odd, then Prfoutcome is 4joutcome is oddg ¼ 0. If, however, we were told
that the outcome was a two-digit number (an impossible event), we would not be able to
define the conditional probability.

3.1.3 DEPENDENCE AND INDEPENDENCE

The concepts of event independence and event dependence are expressed in terms of
conditional probabilities. A set of events, Ai, i ¼ 1, 2, . . . , n, are said to be (mutually)
independent, provided that

PrfA1,A2, . . . ,Ang ¼
Yn
i¼1

PrfAig, (3:5)

where the notation PrfA1,A2, . . . ,Ang is shorthand for PrfA1 \ A2 \ . . . \ Ang. Other-
wise, the events are said to be dependent. For two events, A and B, Eq. 3.5 can be
written as

PrfA \ Bg ¼ PrfAg � PrfBg: (3:6)

The meaning of independence (or dependence) becomes clearer when we divide (when
permissible) both sides of the above equation by PrfAg, and separately by PrfBg.
We then obtain the dual equations

PrfAjBg ¼ PrfAgor PrfBjAg ¼ PrfBg, (3:7)

each of which is equivalent to Eq. 3.6. Thus, from Eq. 3.7, independence holds when
the conditional and unconditional probabilities are equal. In other words, knowledge of
one event does not modify the (unconditioned) probability of the other event. Presum-
ably, this is so because the two events are “unrelated,” and the occurrence of one does
not affect the odds of the other. Conversely, two events are dependent, if knowledge
of one event modifies the probability of the other.

Be careful not to confuse independent events ( PrfA \ Bg ¼ PrfAg � PrfBg) with
disjoint events (fA \ Bg ¼ f). These are entirely different concepts, none of which
necessarily implies the other.
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3.2 RANDOM VARIABLES

Conducting an experiment can be thought of as sampling an observation at a sample
point, subject to some underlying probability. For example, suppose we select at
random a car on the assembly line for quality assurance. We can then make multiple
measurements on the car, each revealing a different aspect of its quality, including
possibly the following:

� Breaking distance at 65 miles per hour
� Extent of tire wear after 50,000 miles
� Crash test performance

The concept of random variable is the theoretical construct that captures aspects of
sample points. In the simulation context, a random variable is also referred to as a
variate. It should be pointed out that even though practitioners do not always refer
explicitly to an underlying probability space, such a space is always assumed implicitly.

Omitting some technical conditions, which are beyond the scope of this book, a
random variable X is a function

X :O ! S, (3:8)

where O is the underlying sample space, and S is called the state space of X, and
consists of all possible values that X can assume. A particular value, X (o) ¼ x 2 S,
realized by a random variable for a particular sample point, o (“experiment outcome”),
is called a realization of X. For example, a particular car in a road test plays the role of a
sample point, o, while its properties (breaking distance, tire wear, etc.) correspond to
realizations of various random variables. Note carefully that the notion of a random
variable is quite distinct from the notion of its realizations. To keep this distinction
typographically clear, we shall always denote realizations by lower-case letters and
random variables by upper-case letters.

A state space S can be quite general. It may be real valued or vector valued. In fact, it
need not be numerical at all in order to capture qualitative aspects. For example, if the
random variable X represents the status of a machine, the corresponding state space
may be defined as the four status descriptors S ¼ fIdle, Busy, Down, Blockedg.

Random variables are classified according to their associated state space. A state
space is said to be discrete if it is countable, or continuous, if it is not (it can also be
mixed with discrete and continuous components). For example, the status indicators
S ¼ fUp,Downg for a machine form a discrete state space. However, the random
variable that measures the time to failure of the machine has a continuous state space,
since it can take values in some interval S ¼ ½0, Tmax� of non-negative real numbers.

3.3 DISTRIBUTION FUNCTIONS

The probabilistic properties of random variables are characterized by their distribu-
tion functions (often abbreviated to distributions). These functions assume various
forms, depending on the type of the associated random variable and the nature of its
state space (numerical or not). In particular, a distribution function is continuous or
discrete (or mixed) according to the type of its associated random variable.
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3.3.1 PROBABILITY MASS FUNCTIONS

Every discrete random variable X has an associated probability mass function (pmf ),
pX (x), defined by

pX (x) ¼ PrfX ¼ xg, x 2 S: (3:9)

Note that the notation fX ¼ xg above is a shorthand notation for the event
fo:X (o) ¼ xg. It should be pointed out that the technical definition of a random
variable ensures that this set is actually an event (i.e., belongs to the underlying event
set E). Thus, the pmf is always guaranteed to exist, and has the following properties:

0 � pX (x) � 1, x 2 S,

and X
x2S

pX (x) ¼ 1:

3.3.2 CUMULATIVE DISTRIBUTION FUNCTIONS

Every real-valued random variable X (discrete or continuous) has an associated
cumulative distribution function (cdf), FX (x), defined by

FX (x) ¼ PrfX � xg, �1 < x < 1: (3:10)

Note that the notation fX � xg is a shorthand notation for the event fo:X (o) � xg.
It should be pointed out that the technical definition of a random variable ensures that
this set is actually an event (i.e., belongs to the underlying event set E). Thus, the cdf is
always guaranteed to exist.

The cdf has the following properties:

(i) 0 � FX (x) � 1, �1 < x < 1.
(ii) lim

x!�1FX (x) ¼ 0 and lim
x!1FX (x) ¼ 1.

(iii) If x1 � x2, then FX (x1) � FX (x2) (monotonicity).

Since fX � x1g is contained in fX � x2g, this implies the formula

Prfx1 � X � x2g ¼ FX (x2)� FX (x1), for any x1 � x2: (3:11)

Property (iii) allows us to define the inverse distribution function, F�1
X (y), by

F�1
X (y) ¼ minfx:FX (x) ¼ yg: (3:12)

In words, since FX (x) may not be strictly increasing in x, F�1
X (y) is defined as the

smallest value x, such that FX (x) ¼ y. The inverse distribution function is extensively
used to generate realizations of random variables (see Chapter 4).

3.3.3 PROBABILITY DENSITY FUNCTIONS

If FX (x) is continuous and differentiable in x, then the associated probability density
function (pdf), fX (x), is the derivative function
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fX (x) ¼ d

dx
FX (x), �1 < x < 1: (3:13)

The pdf has the following properties for �1 < x < 1:

(i) fX (x) � 0.

(ii) FX (x) ¼
Rx

�1
fX (x) dx,

and in particular,

FX (1) ¼
Z1

�1
fX (x) dx ¼ 1:

Property (ii) implies the formula

Prfx1 � X � x2g ¼ FX (x2)� FX (x1) ¼
Zx2
x1

fX (x) dx, for any x1 � x2: (3:14)

For a discrete random variable X, the associated pmf is sometimes referred to as a pdf
as well. This identification is justified by the fact that a mathematical abstraction
allows us, in fact, to define differencing as the discrete analog of differentiation. Indeed,
for a discrete real-valued random variable X, we can write

FX (x) ¼
X
y�x

fX (y), �1 < x < 1, (3:15)

and each value, fX (x) ¼ pX (x), can be recovered by differencing in Eq. 3.15.

3.3.4 JOINT DISTRIBUTIONS

Let X1,X2, . . . ,Xn be n real-valued random variables over a common probability
space. The joint cdf of X1,X2, . . . ,Xn is the function

FX1, ...,Xn (x1, . . . , xn) ¼ PrfX1 � x1, . . . ,Xn � xng, �1 < xi < 1, i ¼ 1, . . . , n: (3:16)

Similarly, the joint pdf, when it exists, is obtained by multiple partial differentiation,

fX1, ...,Xn (x1, . . . , xn) ¼
@

@x1
. . .

@

@xn
FX1, ...,Xn (x1, . . . , xn), �1 < xi < 1, i ¼ 1, . . . , n:

(3:17)

In this context, each cdf FXi (x) and pdf fXi (x) are commonly referred to as a marginal
distribution and marginal density, respectively.

The random variables X1,X2, . . . ,Xn are mutually independent, if
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FX1, ...,Xn (x1, . . . , xn) ¼
Yn
i¼1

FXi (xi), �1 < xi < 1, i ¼ 1, . . . , n (3:18)

or equivalently

fX1, ...,Xn (x1, . . . , xn) ¼
Yn
i¼1

fXi (xi), �1 < xi < 1, i ¼ 1, . . . , n, (3:19)

provided that the densities exist. In other words, mutual independence is exhibited when
joint distributions or densities factor out into their marginal components.

A set of random variables, X1,X2, . . . ,Xn, are said to be iid (independently, identi-
cally distributed), if they are mutually independent and each of them have the same
marginal distribution.

3.4 EXPECTATIONS

The expectation of a random variable is a statistical operation that encapsulates the
notion of “averaging.” In other words, it assigns to a real-valued random variable, X,
a number, E[X], called the mean or expected value or just the expectation of X. The
expectation operation converts a random variable, X, to a deterministic scalar quantity,
the mean value E[X], which can be thought of as a “central value” of X.

The mathematical definition of expectation varies according to the nature of the
underlying state space. For a discrete random variable X with pmf pX (x), we define

E½X � ¼
X
x2S

x pX (x), (3:20)

and for a continuous random variable with pdf fX (x), we define

E½X � ¼
Z1

�1
x fX (x) dx: (3:21)

We mention that the expectations in Eqs. 3.20 and 3.21 are only defined when the
corresponding sum or integral exist. In either case, the averaging action of the expect-
ation yields a weighted sum or integral, where the weights are probabilities or densities.

Let X and Y be random variables, whose expectations exist, and let a and b be real
numbers. Then,

E½a X þ b Y � ¼ a E½X � þ b E½Y �: (3:22)

Equation 3.22 shows that expectation is linear.

3.5 MOMENTS

Moments are expectations of the powers of a random variable. They provide infor-
mation on the underlying distribution, and are sometimes used as parameters of
particular distribution functions. Mathematically, the k-th moment of X is given by
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mk ¼ E½X k �, k ¼ 1, 2, . . . (3:23)

Thus, for k ¼ 1,m1 ¼ E½X � is just the mean. The second moment, m2 ¼ E½X 2�, is used
to define the variance of X

V½X � ¼ E½X 2� � E2½X �, (3:24)

which measures the variability or dispersion of the random variable on the real line in
units of X 2. Unlike expectation, the variance operation is not linear, since

V½aX þ bY � ¼ a2 V½X � þ b2 V½Y � þ 2ab Cov½X , Y �, (3:25)

where

Cov½X , Y � ¼ E½XY � � E½X � E½Y � (3:26)

is the covariance of X and Y. The covariance of two random variables is a measure of
association, indicating how two random variables “vary together.” This topic will be
covered in greater detail in Section 3.6, where a more useful measure of association will
be presented as a normalized covariance. For now, we just point out that (3.26) readily
shows the nonlinearity of the covariance, since

Cov½aX , bY � ¼ ab Cov½X ,Y �: (3:27)

An alternative measure of variability or dispersion is the standard deviation of X,

s½X � ¼
ffiffiffiffiffiffiffiffiffiffi
V½X �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X 2� � E2½X �

q
, (3:28)

which is expressed in units of X.
The squared coefficient of variation of X, is the statistic

c2½X � ¼ V½X �
E2½X � , (3:29)

which is yet another measure of the variability or dispersion of X, this time normalized
to a unitless quantity.

While the number of moments is infinite (though not all may exist), only the first
few moments are considered in practice. In particular, the third moment influences
the skewness (departure from symmetry) of the distribution of X via the coefficient of
skewness

n½X � ¼ E½(X � E½X �)3�
s3½X � , (3:30)

which is negative, zero, or positive, according as the distribution is left-skewed,
symmetric, or right-skewed, respectively. In a similar vein, the fourth moment influences
the kurtosis of the distribution of X,

k½X � ¼ E½(X � E½X �)4�
s4½X � � 3, (3:31)
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which measures the degree of “fatness” of the distribution tail relative to a normal
distribution with the same standard deviation (it is negative, zero, or positive, according
as the distribution is less “fat,” equally “fat,” or more “fat,” respectively).

Note that knowledge of a finite number of moments does not determine a distribution,
except in special cases. Furthermore, in pathological cases, moments can be infinite
or mathematically undefined, depending on the shape of the underlying distribution.

3.6 CORRELATIONS

Let X and Y be two real-valued random variables over a common probability space.
It is sometimes necessary to obtain information on the nature of the association
(probabilistic relation) between X and Y, beyond dependence or independence.

A useful measure of statistical association between X and Y is their correlation
coefficient (often abbreviated to just correlation), defined by

r(X ,Y ) ¼ E XY½ � � E½X � E½Y �
s½X � s½Y � , (3:32)

which is well defined whenever the corresponding standard deviations exist and are
finite. Note that the numerator of Eq. 3.32 is precisely Cov[X, Y]. The division by the
standard deviations normalizes the covariance into a correlation coefficient, so that it is
invariant under scaling, that is,

r(a X , bY ) ¼ r(X ,Y ), (3:33)

unlike its covariance counterpart (see Eq. 3.27).
The correlation coefficient has the following properties:

1. �1 � r(X ,Y ) � 1.
2. If X and Y are independent random variables, then X and Y are uncorrelated,

that is r(X ,Y ) ¼ 0. However, the converse is false, namely, X and Y may be
uncorrelated and dependent, simultaneously.

3. If Y is a (deterministic) linear function of X, that is, Y ¼ aX þ b, then
If a > 0, then r(X ,Y ) ¼ 1.
If a < 0, then r(X ,Y ) ¼ �1.

Property (3) above provides a clue into the operational meaning of the correlation
coefficient as a measure of linear dependence between X and Y. More specifically,
r(X ,Y ) measures the linear covariation of X and Y as described below.

First, if r(X ,Y ) > 0, then X and Y are positively correlated random variables in the
sense that their realizations tend to behave as follows:

1. When X (o) is a relatively large realization, then Y (o) tends to be a comparatively
large realization simultaneously.

2. When X (o) is a relatively small realization, then Y (o) tends to be a comparatively
small realization simultaneously.

3. When multiple pairs (X (o), Y (o)) are plotted as a graph, the points tend to
arrange themselves in a band of a positive slope. The higher the correlation, the
narrower is the band, until it becomes a line with a positive slope for r(X ,Y ) ¼ 1.
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Second, if r(X ,Y ) < 0, then X and Y are negatively correlated random variables in
the sense that their realizations tend to behave as follows:

1. When X (o) is a relatively large realization, then Y (o) tends to be a comparatively
small realization simultaneously.

2. When X (o) is a relatively small realization, then Y (o) tends to be a comparatively
large realization simultaneously.

3. When multiple pairs (X (o), Y (o)) are plotted as a graph, the points tend to
arrange themselves in a band of a negative slope. The higher the correlation,
the narrower is the band, until it becomes a line with a negative slope for
r(X ,Y ) ¼ �1.

Third, if r(X ,Y ) ¼ 0, then X and Y are uncorrelated random variables in the sense
that there is no apparent linear relation between realization pairs X (o) and Y (o). When
multiple pairs (X (o), Y (o)) are plotted on as a graph, the points form a “blob” with no
apparent “direction.”

Recall that correlation is a weaker concept than dependence, since it only measures
linear dependence (X and Y may be related by another functional relation, e.g., quad-
ratic). Still, linear dependence is a common instance of dependence, and is often taken
as a proxy for dependence.

3.7 COMMON DISCRETE DISTRIBUTIONS

This section reviews the most commonly used discrete distributions and the under-
lying random experiment, and discusses their use in simulation modeling. For more
information, see Bratley et al. (1987) or Law and Kelton (2000). We shall use indicator
functions, defined for any set A by

1A(x) ¼ 1, if x 2 A
0, if x =2 A

�
: (3:34)

We also routinely indicate that a random variable X has distribution D by the notation
X � D.

3.7.1 GENERIC DISCRETE DISTRIBUTION

A discrete random variable, X, corresponds to a trial (random experiment) with a
countable (finite or infinite) number of distinct outcomes. Thus, its state space has
the form S ¼ fs1, . . . , si, . . .g, where a generic state (realization), si, may be any
symbol (it is common, however, to code the states by integers, when convenient).
The generic discrete distribution is denoted by Disc(f(pi, vi): i ¼ 1, 2, . . .g),1 where
each parameter pair, (pi, vi), corresponds to PrfX ¼ vig ¼ pi.

The pmf of X � Disc(f(pi, vi): i ¼ 1, 2, . . .g) is given by

1 Note that while distribution names resemble those of Arena, the corresponding parameter definitions may
differ from their Arena counterparts.
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pX (x) ¼
X
vi2S

1fvig(x) pi ¼
pi, if x ¼ vi for some i
0, otherwise

�
(3:35)

and for a real-valued state space, say S ¼ f1, 2, . . .g, the corresponding distribution
function is given by

FX (x) ¼
X½x�
i¼1

pi ¼
0, if x < 1Pk
i¼1

pi, if k � x < k þ 1

8<
: (3:36)

where [x] is the integral part of x.
The generic discrete distribution may be used to model a variety of situations,

characterized by a discrete outcome. In fact, all other discrete distributions are simply
useful specializations of the generic case.

3.7.2 BERNOULLI DISTRIBUTION

A Bernoulli random variable, X, corresponds to a trial with two possible outcomes:
success or failure. Thus, its state space has the form S ¼ f0, 1g, where state 0 codes
for a failure realization and state 1 codes for a success realization. The Bernoulli
distribution is denoted by Ber(p), where p represents the probability of success (and
therefore, 1� p is the probability of failure).

The pmf of X � Ber(p) is

pX (k) ¼ p, k ¼ 1
1� p, k ¼ 0

�
(3:37)

and the corresponding mean and variance are given by the formulas:

E½X � ¼ p (3:38)

and

V½X � ¼ p(1� p): (3:39)

A Bernoulli random variable may be used to model whether a job departing from a
machine is defective (failure) or not (success).

3.7.3 BINOMIAL DISTRIBUTION

A binomial random variable, X ¼ Pn
k¼1

Xk , is the sum of n independent Bernoulli

random variables, Xk , with a common success probability, p. Thus, its state space has
the form S ¼ f0, 1, . . . , ng, and state k corresponds to a realization of k successes
in n Bernoulli trials. The binomial distribution is denoted by B(n, p).

The pmf of X � B(n, p) is

pX (k) ¼ n
k

� �
pk(1� p)n�k , k ¼ 0, 1, . . . , n, (3:40)
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where
n
k

� �
¼ n!

k!(n� k)!
, n � k � 0, and the corresponding mean and variance are

given by the formulas

E½X � ¼ np (3:41)

and

V½X � ¼ np(1� p): (3:42)

A binomial random variable may be used to model the total number of defective items
in a given batch. Such a binomial trial can be a much faster procedure than conducting
multiple Bernoulli trials (for each item separately).

3.7.4 GEOMETRIC DISTRIBUTION

A geometric random variable, X, is the number of Bernoulli trials to and including
the first success. The geometric distribution is denoted by Ge(p), where p represents
the probability of success (and therefore, 1� p is the probability of failure). Since the
number of trials is potentially unbounded, the state space becomes S ¼ f1,
2, . . . , k, . . .g.

The pmf of X � Ge(p) is

pX (k) ¼ (1� p)k�1p, k ¼ 1, 2, . . . (3:43)

and the corresponding mean and variance are given by the formulas

E½X � ¼ 1

p
(3:44)

and

V½X � ¼ 1� p

p2
: (3:45)

A geometric random variable may be used to model the number of good product units,
separating consecutive bad (defective) ones.

The geometric distribution is also widely used in mathematical models, because it often
renders the analysis tractable. This tractability is due to the fact that the geometric distribu-
tion is the only discrete distribution with the so-called memoryless property, namely,

PrfX > k þ njX > kg ¼ PrfX > ng, for all k, n � 1: (3:46)

This equation states that the probability that the remaining number of trials to the next
success is independent of the number of trials elapsed since the previous success.

3.7.5 POISSON DISTRIBUTION

A Poisson random variable, X, can be thought of as a generalization of a binomial
random variable from discrete trials to continuous trials. It represents the total number
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of successes as the limit of a sequence of binomial trials, in which n tends to infinity
and p tends to 0, such that the product np ¼ l is fixed and represents the rate of
successes per time unit. The resulting Poisson random variable then represents the
number of successes in a unit interval. Since the number of successes is potentially
unbounded, the state space becomes S ¼ f0, 1, . . . , k, . . .g. The Poisson distribution
is denoted by Pois(l).

The pmf of X � Pois(l) is

pX (k) ¼
e�llk
k! , k ¼ 0, 1, . . .

0, otherwise

�
(3:47)

and the corresponding mean and variance are given by

E½X � ¼ l (3:48)

and

V½X � ¼ l (3:49)

A Poisson random variable is often used to model the number of random occurrences in
a time interval. Examples include the number of machine failures in a time interval,
number of customer demands in a time interval, and so on.

3.8 COMMON CONTINUOUS DISTRIBUTIONS

This section reviews the most commonly used continuous distributions and the
underlying random experiment, and discusses their use in simulation modeling. For
more information, see Bratley et al. (1987) or Law and Kelton (2000).

3.8.1 UNIFORM DISTRIBUTION

A uniform random variable, X, assumes values in an interval S ¼ ½a, b�, b > a, such
that each value is equally likely. The uniform distribution is denoted by Unif (a, b),
and is the simplest continuous distribution.

The pdf of X � Unif (a, b) is

fX (x) ¼
1

b�a, if a � x � b ,

0, otherwise

(
(3:50)

and the cdf is

FX (x) ¼
0, if x < a
x�a
b�a , if a � x � b

1, if x > b:

8<
: (3:51)

The corresponding mean and variance are given by the formulas

E½X � ¼ aþ b

2
(3:52)
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and

V½X � ¼ (b� a)2

12
: (3:53)

A graph of the pdf of a uniform distribution is depicted in Figure 3.1.
A uniform random variable is commonly employed in the absence of information

on the underlying distribution being modeled.

3.8.2 STEP DISTRIBUTION

A step or histogram random variable, X, generalizes the uniform distribution in that
it constitutes a probabilistic mixture of uniform random variables. The step distribution
is denoted by Cont(f(pj, lj, rj): j ¼ 1, 2, . . . , Jg), where the parameters have the
following interpretation: X � Unif (lj, rj) with probability pj, j ¼ 1, 2, . . . , J. Thus,
the state space of X is the union of intervals,

S ¼
[J
j¼1

½lj, rj):

The pdf of X � Cont(f(pj, lj, rj): j ¼ 1, 2, . . . , Jg) is given by

fX (x) ¼
XJ
j¼1

1½lj , rj)(x)
pj

rj � lj
¼

pj
rj�lj

, if lj � x < rj

0, otherwise

(
(3:54)

Thus, the resulting pdf is a step function (mixture of uniform densities) as illustrated in
by Figure 3.2, and the corresponding cdf is given by

FX (x) ¼
0, if x < l1
PJ
j¼1

1½lj , rj)(x)
Pj�1

i¼1
pi þ (x� lj)

pj
rj�lj

� �
, if l1 � x < rJ

1, if x � rJ :

8>>><
>>>:

(3:55)

The corresponding mean and variance are given by the formulas
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Figure 3.1 Density function of the Unif(0, 1) distribution.
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E½X � ¼
XJ
j¼1

pj
lj þ rj
2

(3:56)

and

V½X � ¼ 1

3

XJ
j¼1

pj l2j þ ljrj þ r2j

� �
� 1

4

XJ
j¼1

pj rj þ lj
	 
 !2

(3:57)

A step random variable is routinely used to model an empirical distribution, estimated
by a histogram. Suppose the histogram has J cells. Then cell j coincides with the
interval ½lj, rj), and the probability estimate (relative frequency) of the cell will be
assigned as the value of the corresponding pj.

3.8.3 TRIANGULAR DISTRIBUTION

A triangular random variable, X, assumes values in an interval S ¼ ½a, b�, with the
most “likely” value (the mode) being some point c 2 ½a, b�. The likelihood increases
linearly in the subinterval ½a, c�, and decreases linearly in the subinterval ½c, b�, so
that the density has a triangular shape (see Figure 3.3). The triangular distribution is
denoted by Tria(a, c, b).

The pdf of X � Tria(a, c, b) is

fX (x) ¼

2(x�a)
(b�a)(c�a) , if a � x � c

2(b�x)
(b�a)(b�c) , if c � x � b

0, otherwise.

8>>><
>>>:

(3:58)

The corresponding mean and variance are given by the formulas

E½X � ¼ aþ bþ c

3
(3:59)

and
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Figure 3.2 Density function of the Cont({(0.3, 0, 3), (0.2, 3, 4), (0.5, 4, 8)}) distribution.
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V½X � ¼ a2 þ b2 þ c2 � ab� ac� bc

18
(3:60)

A triangular random variable is used when the underlying distribution is unknown,
but it is reasonable to assume that the state space ranges from some minimal value, a, to
some maximal value, b, with the most likely value being somewhere in between, at c.
The choice of c then determines the skewness of the triangular distribution. The
piecewise linear form of the pdf curve of Figure 3.3 is the simplest way to represent
this kind of behavior.

3.8.4 EXPONENTIAL DISTRIBUTION

An exponential random variable, X, assumes values in the positive half-line
S ¼ ½0,1�. The exponential distribution is denoted by Expo(l), where l is called the
rate parameter.2

The pdf of X � Expo(l) is

fX (x) ¼ le�lx, x � 0, (3:61)

and the cdf is

FX (x) ¼ 1� e�lx, x � 0: (3:62)

The corresponding mean and variance are given by the formulas

E½X � ¼ 1

l
(3:63)

and

V½X � ¼ 1

l2
: (3:64)

A graph of the pdf of an exponential distribution is depicted in Figure 3.4.
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Figure 3.3 Density function of the Tria(5, 7, 10) distribution.

2 Note that in Arena, the corresponding parameter is the mean 1=l, rather than the rate l.
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Exponential random variables are widely used to model “random” interarrival times in
continuous time, especially when these are iid. Examples include customer interarrivals,
times to failure, and so on.

The exponential distribution is also widely used in mathematical models, because it
often renders the analysis tractable. This tractability is due to the fact that the exponen-
tial distribution is the only continuous distribution with the so-called memoryless
property, namely,

PrfX > sþ tjX > sg ¼ PrfX > tg, for all s, t � 0: (3:65)

The equation above states that the probability that the remaining time to the next arrival
is independent of the time elapsed since the previous arrival. In fact, the exponential
distribution constitutes a generalization of the geometric distribution to continuous time.

3.8.5 NORMAL DISTRIBUTION

A normal random variable, X, can assume any value on the real line S ¼ (�1,1).
The normal distribution is denoted by Norm(m, s2), where m is the mean (scale param-
eter) and s2 is the variance (shape parameter), and has the familiar bell shape (Figure
3.5), popularly known as the bell curve. In the technical literature, it is also known as
the gaussian distribution, as a tribute to the mathematician Gauss. The special case
Norm(0,1) is known as the standard normal distribution. Another transformation of
normal random variables, implemented by Arena, results in the so-called Johnson
distribution (see Kelton et. al. 1998).

The pdf of X � Norm(m, s2) is

fX (x) ¼ 1

s
ffiffiffiffiffiffi
2p

p e
(x�m)2

2s2 , �1 < x � 1: (3:66)

The corresponding mean and variance are given by the formulas

E½X � ¼ m (3:67)

and
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Figure 3.4 Density function of the Expo(5) distribution.
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V½X � ¼ s2: (3:68)

A graph of the pdf of the standard normal distribution is depicted in Figure 3.5.
An important property of normal random variables is that they can always be

standardized. This means that if X � Norm(m,s2), then

Z ¼ X � m
s2

� Norm(0, 1)

is a standard normal random variable. Furthermore, if X � Norm(mX , s
2
X ) and

Y � Norm(mY ,s
2
Y ) are independent normal variables, then

aX þ bY � Norm(amX þ bmY , a
2s2X þ b2s2Y ),

which shows the linearity of normal distributions.
A normal random variable is used to model many random phenomena that can be

expressed as sums of random variables, by virtue of the central limit theorem. This
fundamental theorem asserts that the distribution of the sum approaches the normal
distribution when the addends are iid (and in other cases as well).

The analyst should be careful in using normal distributions to model random phenom-
ena, which cannot assume negative values (e.g., interarrival times). If the mean, m, is large
enough, then a negative value would be sampled relatively rarely, and may be simply
ignored until further sampling yields a “legal” non-negative value. The analyst should be
aware, however, that this procedure samples from a distribution that is no longer normal;
rather, it is a normal distribution, conditioned on the outcome being non-negative.

3.8.6 LOGNORMAL DISTRIBUTION

A lognormal random variable, X, assumes values in the positive half-line S ¼ ½0,1�.
The lognormal distribution is denoted by Logn(m,s), where m is a scale parameter and
s is a shape parameter.
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Figure 3.5 Density function of the Norm(0, 1) distribution.
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The pdf of X � Logn(m,s) is

fX (x) ¼ 1

sx
ffiffiffiffiffiffi
2p

p e
( ln x�m)2

2s2 , x � 0: (3:69)

The corresponding mean and variance are given by the formulas

E½X � ¼ e mþs2=2 (3:70)

and

V½X � ¼ e 2mþs2 (es
2 � 1): (3:71)

A graph of the pdf of a lognormal distribution is shown in Figure 3.6.
A lognormal random variable, X, can be represented as X ¼ eY , where

Y � Norm(m,s2). It is always positive, and is often used in finance to model financial
random processes.

3.8.7 GAMMA DISTRIBUTION

A gamma random variable, X, assumes values in the positive half-line S ¼ ½0,1�.
The gamma distribution is denoted by Gamm(a,b), where a > 0 is the shape parameter
and b > 0 is the scale parameter.3

The pdf of X � Gamm(a, b) is

fX (x) ¼ xa�1e�x=b

baG(a)
, x � 0; (3:72)

where

G(a) ¼
Z 1

0
ya�1e�y dy (3:73)
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Figure 3.6 Density function of the Logn(0, 1) distribution.
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is known as the gamma function. The corresponding mean and variance are given by
the formulas

E½X � ¼ ab (3:74)

and

V½X � ¼ ab2: (3:75)

Three graphs of the pdf of gamma distributions are depicted in Figure 3.7.
As the parameter names suggest, the gamma distribution is a parameterized family of

distributions. A particular distribution can be selected with an appropriate choice of
the shape and scale parameters. For example, for a ¼ 1 and b ¼ 1=l, we obtain the
exponential distribution Expo(l), since G(1) ¼ 1. More generally, for integer a ¼ k � 1
and b ¼ 1=l, we obtain an Erlang distribution, denoted by Erl(k, l),4 and given by

fX (x) ¼ lkxk�1e�lx

(k � 1)!
, x � 0: (3:76)

The Erlang distribution is useful because an Erlang random variable can be represented
as the sum of k iid exponential random variables, with a common rate, l, and in
particular, Erl(1, l) ¼ Expo(l). An Erlang random variable is useful in modeling
multiple exponential “phases” with a common rate. For example, the model of a
manufacturing subsystem, where products are serially processed without waiting in k
processes with common processing rate l, can be equivalently aggregated into one
process with service distribution Erl(k,l).

Another useful specialization is obtained for a ¼ n=2 (n even) and b ¼ 2, which
is called the chi-square distribution with n degrees of freedom, and denoted by w2(n).
A w2(n) distributed random variable, X, can be represented as a sum

X ¼
Xn
i¼1

Y 2
i
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Figure 3.7 Density functions of the Gamm(1, 1), Gamm(2, 1), and Gamm(3, 1) distributions.
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of n independent squared standard normal random variables, Yi. The class of chi-square
distributed random variables has extensive applications in statistics.

3.8.8 STUDENT’S t DISTRIBUTION

A Student's t random variable, X, (t random variable, for short) can assume any
value on the real line S ¼ (�1,1). The t distribution is denoted by t(n), where the
n parameter is the number of degrees of freedom.

The pdf of X � t(n); n > 2; is

fX (x) ¼ G((nþ 1)=2)ffiffiffiffiffiffi
pn

p
G(n=2)

1þ x2

n

� ��(nþ1)=2

, �1 � x � 1 (3:77)

where G is the gamma function of Eq. 3.73. The corresponding mean and variance are
given by the formulas

E½X � ¼ 0 (3:79)

and

V½X � ¼ n

n� 2
: (3:80)

A graph of the pdf of a Student's t distribution is depicted in Figure 3.8.
A t(n) distributed random variable X can be represented as

X ¼ Zffiffiffiffiffiffiffiffiffi
Y=n

p , (3:81)

where Z � Norm(0, 1) is a standard normal random variable, Y � w2(n) is a chi-square
random variable with n degrees of freedom, and Z and Yare independent. As can be seen
in Figure 3.8, t(n) distributions have a functional form similar to that of the standard
normal distribution, Norm(0, 1), but with “fatter” tails, which give rise to larger
variances as indicated by Eq. 3.80. However, as the degrees-of-freedom parameter, n,
tends to infinity, the t(n) distribution converges to Norm(0, 1).
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Figure 3.8 Density function of the t(10) distribution.
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3.8.9 F DISTRIBUTION

An F random variable, X, assumes values in the positive half-line S ¼ ½0,1�. The
F distribution is denoted by F(n1, n2), where n1 and n2 are the degrees of freedom
parameters.

The pdf of X � F(n1, n2) is

fX (x) ¼ G((n1 þ n2)=2)

G(n1=2)G(n2=2)
n1
n2

� �n1=2 x(n1=2)�1

1þ n1
n2

x
h i(n1þn2)=2

, 0 � x � 1 (3:82)

where G is the gamma function of Eq. 3.73. The corresponding mean and variance are
given by the formulas

E½X � ¼ n2
n2 � 2

(for n2 > 2) (3:83)

and

V½X � ¼ 2n22(n1 þ n2 � 2)

n1(n2 � 4)(n2 � 2)
(for n2 > 4): (3:84)

An F(n1, n2) density is depicted in Figure 3.9.
An F(n1, n2) distributed random variable X can be represented as

X ¼ V=n1
W=n2

, (3:85)

where V � w2(n1) and W � w2(n2) are independent chi-square random variables with
the corresponding degrees of freedom. The F(n1, n2) distribution is skewed to the right,
but it becomes less skewed as the degrees-of-freedom parameters, n1 and n2, increase in
magnitude.
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Figure 3.9 Density function of the F(1, 1) distribution.
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3.8.10 BETA DISTRIBUTION

A beta random variable, X, assumes values in the unit interval S ¼ ½0, 1�, although it
may be scaled and shifted to any interval. The beta distribution is denoted by Beta(a,b),
where a > 0 and b > 0 are two shape parameters.5

The pdf of X � Beta(a, b) is

fX (x) ¼ xa�1(1� x)b�1

B(a,b)
0, � x � (31, :86)

where

B(a, b) ¼
Z 1

0
ya�1(1� y)b�1dy ¼ G(a)G(b)

G(aþ b)
(3:87)

is known as the beta function, and is defined in terms of the gamma function
of Eq. 3.73. The corresponding mean and variance are given, respectively, by the
formulas

E½X � ¼ a
aþ b

(3:88)

and

V½X � ¼ ab
(aþ b)2(aþ bþ 1)

: (3:89)

Three graphs of the pdf of beta distributions are depicted in Figure 3.10.
A beta random variable is often used in statistics to model an unknown probability,

regarded as a random variable.

5 Note that the beta distribution in Arena has the parameters in reverse order.
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Figure 3.10 Density functions of the Beta(1.5, 5), Beta(5, 5), and Beta(5, 1.5) distributions.
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3.8.11 WEIBULL DISTRIBUTION

A Weibull random variable, X, assumes values in the positive half-line S ¼ ½0,1�.
The Weibull distribution is denoted by Weib(a,b), where a > 0 is the shape parameter
and b > 0 is the scale parameter.6

The pdf of X � Weib(a,b) is

fX (x) ¼ a
ba

xa�1e�(x=b)a , x � 0: (3:90)

The corresponding mean and variance, respectively, are given by the formulas

E½X � ¼ aG(1=bþ 1) (3:91)

and

V½X � ¼ a2½G(2=bþ 1)� G2(1=bþ 1)� (3:92)

in terms of the gamma function of Eq. 3.73. Three graphs of the pdf of Weibull
distributions are depicted in Figure 3.11.

The Weibull distribution is a parametric family of distributions. For a ¼ 1 and
b ¼ 1=l, it becomes the exponential Expo(l) distribution, while for a ¼ 2, it becomes
the Rayleigh distribution (often used in artillery trajectory computations). Weibull
random variables are often used in modeling the aging process of components in
reliability analysis.

3.9 STOCHASTIC PROCESSES

A stochastic process is a time-indexed set of random variables, fXtgt2T , with a
common state space S, over a common probability space. The associated probability
measure is called the probability law of the process. The time set, T, can be discrete or
continuous, typically of the form T ¼ f0, 1, . . . , n, . . .g or T ¼ ½0,��, where� is either
finite or infinite. For example, Xt may model the inventory level of a particular product
in a warehouse at time t.
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Figure 3.11 Density functions of the Weib(1, 1), Weib(2, 1), and Weib(3, 1) distributions.

6 Note that the Weibull distribution in Arena has the parameters in reverse order.
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Stochastic processes are widely used to model random phenomena that evolve in
time, such as arrival streams, service times, and routing decisions, to name but a few. In
fact, simulation runs (replications) typically generate extensive realizations of multiple
interacting stochastic processes. A realization of a stochastic process is also called a
sample path, because it represents a possible history of its constituent time-indexed
random variables. Most processes generated by simulation, but by no means all, are
stationary processes, that is, their joint distributions (of any dimension) do not change
in time.

The autocorrelation function of a stochastic process is the correlation coefficient of
its lagged random variables,

r(t, d) ¼ E½XtXtþd� � E½Xt�E½Xtþd�
s½Xt�s½Xtþd� , t 2 T , d � 0: (3:93)

For stationary processes, the autocorrelation function depends only on the first argu-
ment, t. The autocorrelation function is often used as a convenient proxy for temporal
dependence in stochastic processes.

The next few subsections discuss several stochastic processes, commonly used in
simulation. Generation of their sample paths is discussed in Chapter 4. For further
reading on stochastic processes, we recommend that the reader to refer to Ross (1993),
and Taylor and Karlin (1984).

3.9.1 IID PROCESSES

Independent identically distributed (iid) processes have the simplest possible prob-
ability law, since all random variables indexed by its time set are mutually independent
and share a common marginal distribution. This means that iid processes do not have
temporal dependence (time dependence) in the sense that their “past” is always prob-
abilistically irrelevant to their “future.”

Iid processes are extensively used in simulation modeling, when justified by model-
ing considerations, or as a simplifying assumption in the absence of additional infor-
mation. Typical examples are arrival processes, whose interarrival times are modeled as
iid random variables or times to failure in a machine, which are often assumed to be iid.

3.9.2 POISSON PROCESSES

A Poisson process fKtgt�0 is a counting process, that is, it has state space
S ¼ f0, 1, . . .g, continuous time set T, and nondecreasing sample paths; however, count
increments may not exceed 1 (multiple simultaneous arrivals are not allowed). A
random variable Kt from a Poisson process represents the (cumulative) count of some
abstract “arrivals”; the last term actually connotes any phenomenon that can be declared
to take place at discrete time points (e.g., job arrivals, failures, etc.). The distinguishing
feature of any Poisson process is the independent increment property, which in its
simplest form states that

PrfKtþu � KtjKs, s � tg ¼ PrfKtþu � Ktg, for all t, u � 0: (3:94)
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In words, a count increment in a future interval is independent of any past counts. It
can be shown that this property alone forces the Poisson process to have a specific count
increment distribution, and a specific interarrival distribution as follows:

1. Any count increment of the form Ktþu � Kt, over the interval ½t, t þ u� of length u,
has the Poisson distribution Pois(lu), for some l > 0.

2. The interarrival times between successive arrivals are iid exponential with the
aforementioned parameter, l, that is, their distribution is Expo(l).

In fact, conditions 1 and 2 are equivalent characterizations of the Poisson process.
The parameter l is the arrival rate of the Poisson process (expected number of arrivals
per time unit).

The following operations on Poisson processes result in new Poisson processes
(closure properties):

1. The superposition of independent Poisson processes (merging all their arrival
points along the timeline) results in a new Poisson process. More specifically, if
fKtgt�0 and fLtgt�0 are independent Poisson processes, with respective arrival
rates lK and lL, then the superposition process, fKt þ Ltgt�0 is a Poisson process
of rate lK þ lL.

2. The thinning of a Poisson process (random deletion of its arrival points) results in
a new Poisson process. More specifically, if fKtgt�0 is a Poisson process of rate
lK , from which arrivals are deleted according to independent Bernoulli trials with
probability 1� p, then the thinned process, fLtgt�0 is a Poisson process of rate
lL ¼ plK .

The simplicity of Poisson processes and their closure properties render them a popular
traffic model in network systems, because traffic merging and thinning of Poisson
processes (by splitting such a stream into substreams) result in new Poisson processes.
Moreover, Poisson processes have been widely used to model external arrivals to a
variety of systems, where arriving customers make “independent arrival decisions.” For
example, telephone customers do not normally “coordinate” their phone calls, and
customer demand arrivals are usually independent of each other. In these cases, the
Poisson process assumption on the respective arrival processes may well be justified.

3.9.3 REGENERATIVE (RENEWAL) PROCESSES

A stochastic process fXt: t � 0g (discrete time or continuous time) is characterized
as regenerative or renewal if it has (usually random) time points T1,T2, . . ., such that
the partial process histories fXt: Tj � t < Tjþ1g over the intervals ½Tj,Tjþ1) are iid. In
other words, the partial histories are independent statistical replicas of each other. For
this reason, the time points T1,T2, . . . are referred to as regeneration points or renewal
points, because they identify when the underlying process “renews” or “regenerates”
itself statistically.

3.9.4 MARKOV PROCESSES

Markov processes form the simplest class of dependent stochastic processes,
with dependence extending only to the most “recent” past information. Formally,
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fMtgt�0 is a Markov process, if for all events fMu 2 Ag, it satisfies the Markovian
condition

PrfMu 2 AjMs: s � tg ¼ PrfMu 2 AjMtg for all 0 � t � u: (3:95)

The probability law 3.95 is relatively simple. It stipulates that the probability of a
future event probability PrfMu 2 Ag conditioned on past random variables fMs: s � tg
(history) before u, equals the probability of the same future event, conditioned only on
the most recent random variable, Mt. This means that in Markov processes, knowledge
of information strictly predating some time t is immaterial for event probabilities
after t.

The relative simplicity of Markov processes renders them popular models in analysis
as well, without sacrificing the feature of temporal dependence. For example, discrete-
time Markov processes with a discrete space S, known asMarkov chains, are particularly
simple. For a Markov chain, Eq. 3.95 becomes a matrix Q ¼ ½qi, j�, called the transition
probability matrix, where

qi, j ¼ PrfMkþ1 ¼ jjMk ¼ ig for any pair of states i, j 2 S: (3:96)

The statistics of Markov chains can then be computed using matrix calculus.
Discrete-state Markov processes in continuous time are often classified as jump

processes, because their sample paths have the form of step functions, whose discon-
tinuities (jumps) correspond to state transitions. Markov jump processes have a simple
structure that facilitates their generation:

1. Jumps are governed by transition probabilities similar to Eq. 3.96. The sequence
of states visited by jumps is called the jump chain.

2. The time elapsed in state i is distributed exponentially with parameter li, which
depends only on state i but not on the state transitioned to.

As an example, consider an M/M/1 queue (iid exponential interarrival and service
times), with the Markovian state being the number of customers in the system. The state
jumps up and down following customer arrivals and service completions, respectively,
and is otherwise constant.

A useful generalization of this kind of Markov jump processes is the class ofMarkov
renewal processes. Here, the step-function form of sample paths is retained, as well as
the Markovian structure of the jump chain. However, the times separating jumps can
have a general (not necessarily exponential) distribution, and the transition probabilities
of the time intervals separating successive jumps depend not only on the state jumped
from, but also on the state jumped to. For more details, see Çinlar (1975).

3.10 ESTIMATION

An estimator is a random statistic, namely, a function of some observed random
sample of data. A value of the estimator is called an estimate (usually the estimated
quantity is some unknown parameter value). Note that an estimator is a random
variable, while an estimate is one of its realizations. Good estimators are unbiased, that
is, as the sample size grows to infinity, the expectations of such estimators (which are
random variables) converge to the true parameter value, whatever it is.
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Moments and related statistics are routinely estimated from sample data, using statis-
tical estimators. Consider a (finite) sample Y

*¼ fY1, Y2, . . . ,YNg, where the random
observations fYj, j ¼ 1, . . . ,Ng have a common distribution with mean m and variance
s2. An unbiased estimator for the mean, m, based on the sample Y

*
, is the sample mean

�Y ¼ 1

N

XN
i¼1

Yi: (3:97)

An unbiased estimator of the variance, s2, based on the sample Y
*
, is the sample

variance

S2Y ¼ 1

N � 1

XN
i¼1

½Yi � �Y �2, (3:98)

whereas the sample standard deviation, SY , is just the square root of S2Y .
For a continuous-time history, X

* ¼ fXt:A � t � Bg, the sample time average is

X ¼ 1

B� A

ZB

A

Xt dt: (3:99)

For a sample of pairs Z
*¼f(X1, Y1), (X2,Y2), . . . , (XN , YN )g, with common joint distri-

butions for all pairs (Xj,Yj), j ¼ 1, . . . ,N , a common estimator of the correlation
coefficient, r(X ,Y ), is the sample correlation coefficient

r(X , Y ) ¼
PN
i¼1

(Xi � X )(Yi � Y )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Xi � X )2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Yi � Y )2
s : (3:100)

Note that all the estimators above are point estimators, that is, they provide a scalar
estimate of some unknown parameter. In addition, an estimate of an interval in which
the unknown parameter lies can also be established. Specifically, let C be some
estimator of an unknown parameter y. A (1� a) confidence interval for y is a random
interval of the form ½A,B�, such that PrfA � y � Bg ¼ 1� a. In other words, a confi-
dence interval [A, B] contains the unknown parameter y with probability (1� a).
Usually, the confidence interval is of the form ½A,B� ¼ ½C � D1,C þ D2� for some
random offsets, D1 and D2.

3.11 HYPOTHESIS TESTING

Hypothesis testing is statistical decision making. The modeler formulates two
complementary hypotheses, called the null hypothesis (denoted by H0) and the alter-
native hypothesis (denoted by H1). A decision is traditionally applied to the null
hypothesis, which is either accepted or rejected. Consequently, two types of errors are
possible:

Type I: Rejecting H0 erroneously
Type II: Accepting H0 erroneously
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The goal of hypothesis testing is to reject (or accept) H0, such that if H0 is in fact
true, then the probability of erroneously rejecting it (type I error) does not exceed some
prescribed probability, a, called the confidence level or significance level. The smaller is
a, the higher is the confidence in a corresponding rejection decision.

For example, suppose we wish to compare the failure rates d1 and d2 of machines
1 and 2, respectively, at significance level a ¼ 0:05. The associated hypotheses
follow:

H0: d1 � d2
H1: d1 > d2.

�

The modeler then forms a test statistic, T, from some observed sample data with a
known distribution under the null hypothesis, H0. In our case, the statistic might be the
difference of two failure rate estimates based on some failure data. The state space S of
T is then partitioned into two disjoint regions S ¼ R0 [ R1, where R0 is the acceptance
region, and R1 is the rejection region, such that the probability of type I error does not
exceed, say, a ¼ 0:05. In practice, the analyst computes a realization t of T and decides
to accept or reject H0, according as t fell in region R0 or R1, respectively. A critical
value, c, which depends on the significance level and the test statistic, is often used to
separate the acceptance and rejection regions. We have noted that intervals comprising
individual regions are often constructed as confidence intervals at the corresponding
confidence levels.

An alternative approach to hypothesis testing is to compute the probability value
(commonly abbreviated to p-value) of the realization of the test statistic, t, where p is the
smallest significance level,

amin ¼ p, (3:101)

for which the computed test statistic, t, can be rejected (often p is computed as
p ¼ PrfT > tg). To understand this concept, note that in hypothesis testing, we first
fix a (and therefore the critical values that define the acceptance and rejection regions),
and then decide whether to accept or reject, depending on the region in which the test
statistic t fell. We reject the null hypothesis when p � a, and accept it when p > a.
Conversely, suppose we do not fix a before computing the test statistic t, but allow it to
“float.” We would like to know how small can a be made and still permit the null
hypothesis to be rejected. This means that we seek the smallest a that satisfies p � a.
Clearly, the requisite a ¼ amin is given by Eq. 3.101.

The p-value contains a considerable amount of information on the quality of our test
decision. Not only can we decide whether to reject the null hypothesis or accept it, but
we can also obtain an idea on how “strongly” we reject or accept it. The smaller p is
compared to a, the stronger is its rejection; conversely, the larger p is relative to a, the
stronger is its acceptance. For this reason the p-value is also called the observed level of
the test. For more information on statistical issues in estimation and hypothesis testing,
see Hoel et al. (1971b) and Devore (1991).

EXERCISES

1. Let X be a random variable uniformly distributed over the interval [2, 6], and let
Y be a random variable distributed according to Tria(2, 3, 7).
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